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Under mild denaturing conditions, many proteins adopt a
nonnative state characterized by compactness, a nativelike secondary
structure, but the absence of rigid tertiary structé&. has been _"J N .
proposed that this molten globule state is a common intermediate
that occurs early in the folding pathways of all globular protéins. L
Recently, it has been suggested that in some cases molten globules - |
correspond to late-folding intermediate&sMore detailed charac- ol 1,
terization of molten globules and protein folding intermediates is | 330 mM Na,SO, 330 mM Na,SO, |
necessary to clarify the relationship between the two species. I

Cytochromec was the first protein in which a globular state _i,.l PP zZ
induced by salt at low pH was detected and named a “molten
globule” Goto et al. later demonstrated that the conformational L 450 mM Na,SO, 450 mM Na,SO,
transition from acid-unfolded protein to this globular state is L
mediated by anion bindingThe structure of the cytochrome ih
molten globule depends strongly on the size of the added &nion. | 700 mM Na,SO, 700 MM Na,SO, |
In addition to salts, polyofsand some alcohdid®have been shown I
to stabilize the molten globule state of cytochromat low pH. j “ S\

We have investigated the conformation $ccaromyces cer-
evisiaeiso-1 cytochrome (cyt ¢) in its molten globule state using
fluorescence energy transfer (FET) kinetics. For our experiments, A
we labeled the thiolate sulfur of C102 in the yeast protein with a 20253035404550556085 0.01 61 1 7o
dansyl fluorophore (DNS(C102)-cyd); the DNS fluoresces in- r(A) k(ns™)
tensely when the protein is unfo!ded, butitis Significantly quenche(;l Figure 1. NaSOs-induced changes in the distribution of the luminescence
by energy transfer to the heme in compact conformations. Analysis decay ratesR(k), right) andD—A distancesR(r), left) in DNS(C102)-cyt
of the fluorescence decay profiles has provided insights into the ¢ (pH ~ 2, 22°C).
distributions of distances between don®@) (and acceptor A)
labeled residuek. In the Faster model, the rate of energy transfer transition of the cytc (C102T mutant) molten globufé. The
is equa| to the decay rate of the unquenched f|u0rop|1@)'@mhen transition in DNS(ClOZ)-cyC is more than 90% reversible.
the D—A distance is equal to the critical lengtty)( Under typical In the native state, the heme in DNS(C102)-cyis low-spin
conditions, FET rates can be measuredDorA distances in the with Met80/His18 axial coordination. The Soret band is centered
range 0.8 < r < 1.5, The critical length () of the DNS-heme at 410 nm, and the Met86- Fe(lll) charge-transfer transition is
FET pair is 40 A, meaning that a 50 A D—A distance range clearly visible at 695 nm (Supporting Information, Figure S2). In
can be probed in the modified protein. Unlike other probes that the acid-denatured state, the protein is high-spin; that is, neither
report on the average properties of the ensemble (fluorescenceMet80 nor His18 is coordinatéd.*® Both the Q-bands and the
intensity, CD, X-ray scattering, absorbance), FET kinetics reveal Soret absorption blue-shift from their positions in the native state.
the conformational heterogeneity of the polypepfitie. The Soret is centered at 396 nm, and there is a band at 620 nm

As expected, the molten globule has very similar helix content attributable to an electronic transition in a high-spin héfiehe
to the native state, whereas the acid-denatured protein exhibits noSoret band is centered at 400 nm in the spectrum of the molten
secondary structure (Supporting Information, Figure S1). The CD globule, and the Q-bands red-shift relative to their positions in the
spectrum in the aromatic region (26800 nm) shows two sharp ~ acid-denatured protein. The heme in the cyholten globule is
peaks (282 and 290 nm) from tryptophan and/or tyrdsife the believed to be mixed spin, with His18 coordinated to iron in both
native state; it is featureless for both the acid-denatured (pH 2) Spin states; Met80 is coordinated in the low-spin species, but not
protein and the molten globule ([$9] > 0.7 M), indicating the ~ in the high-spin staté!7.1821
absence of tertiary structute. We have obtaine@®—A distance distributions in DNS(C102)-

Far-UV CD spectra show that the thermal unfolding transition Cyt ¢ under conditions favoring the molten globule (Figure 1). At
of the DNS(C102)-cyt molten globule at pH 2 is cooperative (data ~ Salt concentrations of 100 mM or lower, the polypeptide ensemble
not shown). The 309 K midpoint temperature is in excellent is highly heterogeneous: 50% of the polypeptides are in extended
agreement with that previously observed for the thermal unfolding conformations wittD—A distances-35 A; the remaining 50% are
in compact conformations with—A distances<35 A. As the salt
* To whom correspondence should be addressed. E-mail: winklerj@caltech.edu. concentration is increased further (36800 mM), the fraction of
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1.0 . between the acid-denatured and molten globule forms ot ¢yt
- not apparent from most ensemble-averaged spectroscopic probes
0.8 - (UV—vis absorption, CD, fluorescence intensity). FET kinetics,
. however, provide definitive evidence for the formation of a
506 . uniformly compact molten globule at salt concentrations greater
g st than 700 mM. It remains to be determined if polyols, alcohols,
w04 - ¢ and other molten-globule stabilizing agetit$® are as effective as
¢ anions in shifting the collapsed/extended equilibrium to a position
02 1 N in which compact states are dominant.
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Figure 2. Fraction of compactr(< 35 A, W) and extendedr (> 35 A, ®)

distributions as a function of N&G; concentration. Supporting Information Available: Far- and near-UV CD spectra

polypeptides in extended conformations decreases in favor of and absorption spectra of DNS(C102)-cyExperimental details (PDF).
compact structures, but both populations remain heterogeneous. AfThis material is available free of charge via the Internet at http:/
high salt concentrations=(700 mM), all of the polypeptides are  pubs.acs.org.
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